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We give a numerical method of solution of the Boltzrnann equation for a weakly ionized 
gas based on the study of the characteristic curves defined by the free motion of particles. 
First, we perform a systematic study of the topological properties of these characteristic 
lines when collisions are present. We show that their distribution not only gives us a method 
of attack for the numerical resolution but also allows us to predict, even before solving 
the Boltxmann equation, the complete behavior of the distribution function. Second, we 
define several discrete schemes and we prove that they are convergent and stable. We also 
give a brief proof of the convergence of the iterative process associated with the resolution 
of the discrete linear system of equations. Finally, we give the results obtained for helium 
gas, both the transmission factor of electrons and the isotropic part of the distribution 
function. The main feature to be emphasized is the existence of a distribution presenting a 
shape with a succession of “knobs” and “hollows” characteristic of a nonequilibrium 
state. 

1. INTRODUCTION 

Our aim in this paper is to develop a numerical method of solution of the Boltzmann 
equation adapted to the study of the motion of electrons in a weakly ionized gas. 
We limit our attention to the case of a stationary but heterogeneous medium (i.e., 
the electron distribution function is dependent on the distance from the cathode). 
Furthermore we adopt the eight main assumptions below. 

(a) We have infinite plane parallel electrodes. 
(b) The electric field E is steady. 
(c) The elastic collisions occur without energy loss (as in a perfect Lorentz gas). 
(d) The inelastic collisions are of the first kind (no desexcitations). 
(e) Collisions are isotropic in the center-of-mass system. 
(f) Ionization is taken as an excitation process. 
(g) The electron distribution function at the cathode is a half-Maxwellian one. 
(h) There is a complete absorption of electrons at the anode. 
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Assumption (c) means that we restrict our calculations to situations where the 
E/P ratio is high (P being the gas pressure). 

Assumption (f) is not restrictive and it has been introduced only for purposes of 
simplification. However, it indicates that the calculations are presently rigorous only 
if the ionization process can be neglected or if we restrict our study to distances below 
ionizing mean free paths. 

Thus, the Boltzmann equation for the electron distribution function f(~, E, p) 
(where z is the position of the electrons (cm), E the kinetic energy (eV), p the cosine 
of the angle 19 between the electric field axis and the electron velocity), may be written 

where U(C) and CJ~(~) are macroscopic cross sections for the elastic collision and the 
atomic excitation of atoms on the level ei, respectively. The total macroscopic 
cross section C+(E) is thus defined by the relation 

We must now add to Eq. (1.1) the boundary conditions as introduced in assumptions 
(g) and (h). We have 

f(z, EP P)Z=O,uzO = A exp( -E/KTeo) = y(e), 

f(G E, P)&P<O = 0, 

where A = 2ne(m/2nKTeo)s/2. 

(1.3a) 

(1.3b) 

In the above relations, L is the gap length, K is the Boltzmann constant, m is the 
electron mass, and ne and Tea are density and temperature of the electrons at the 
cathode, respectively. These relations are of the mixed boundary value type which 
are used very often in neutron physics, in kinetic theory, and generally, in any micro- 
scopic study where walls are present. In our case, however, it will be necessary to 
introduce other boundary conditions to take into account the turning point of 
electrons in the gap due to the presence of the electric field. However, we cannot 
give information about these turning points without making a complete study of 
the topological properties of the electron phase space. 

2. LEFT-HAND-SIDE STUDY OF THE BOLTZMANN EQUATION 

From the 1.h.s. of (l.l), it is easy to obtain the conservative relations 

E(Z, zo) = E . (z - zo), 

P(Z, zo 3 z*) = f(l - ((z* - zo)/(z - s)))“” = z!+(z, z, , z*), 

(2.1) 

(2.2) 
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where we have set z0 = -w/E, z* = -u/E. H ere w is the total energy of the electron 
and u is the total energy related to the Oz axis component of the electron velocity. 
We may notice that z,, is the abscissa of the zero cinetic energy point and that z* 
is the abscissa of the point where ~(z, z,, , z*) cancels. 

If we now express the 1.h.s. of (1.1) in the space generated by the basis 
(Oz, Oz,, , Oz*), we obtain 

p(z z. z*) dff(k +, zo), B(z, zo , z*>) 2 3 dz (2.3) 

The relation above is the mathematical description of the constancy of the distri- 
bution function during the free motion of the electron. As the distribution function is, 
in the new space, no longer bijective according to the variables z, z, , z*, we have 
introduced two new functions f + and f - related to electrons moving forward and 
backward, respectively. 

For the following it will be convenient to set 

Hz, zo , z*) = f *cz, 4z, zo), P(z, zo 3 z*j>. 
In the absence of collision the electrons obey laws (2.1) and (2.2) where the variables 

z. and z* are fixed at the beginning of the motion. When collision occur, the values 
of z, and z* are no longer constant for the motion. We may then distinguish two 
processes: 

(a) a conservative process where z. is constant, but not z*; 
(b) a nonconservative process where z. and z* are not constant. 

2.1. Description of the Conservative Process 

When z, is constant, electrons move with a linear varying cinetic energy as given 
*by (2.1). To simplify the picture, we may consider that all the electrons with z, fixed 
are located in a plane (constant total energy plane), perpendicular to the (06, Oz) 
plane and cutting this one along the characteristic straight lines (2.1). The electrons 
of the constant total energy plane obey relation (2.2). According to the value of z*, we 
obtain a set of characteristic trajectories we have drawn in Fig. 1, where we have set 

2 = z - z, , (2.5a) 
z* = z* - z, . (2.5b) 

It is clear from (2.2), that this (z, p) net is independent of the strength of the electric 
field and of the total electron energy w. To specify somewhat, let us first distinguish 
two zones in the quarter plane Oz > 0, OE > 0 (Fig. 2) according to the sign of w: 

(a) Zone 1, z, < 0 (w > 0). Except for the case w = 0, electrons of this zone 
have a surplus of energy: we find here both electrons directly emitted by the cathode 
and electrons which have been slowed down by collisions. 

(b) Zone 2, z, > 0 (w < 0). All the electrons here are deficient in energy and 
this zone may only be filled in by the electrons coming from zone 1 and slowed down 
by the inelastic collisions. 
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We may see also that, in the case of a perfect Lorentz gas, the electrons are only in 
zone 1, the collisions acting as an angular redistribution inside the total constant 
energy plane. 

From the relation (2.5a) we see that the cathode (z = 0) is located, in the diagram 
of Fig. 1, at the abscissa: 

2, = -20, 

and consequently the anode at 
z, = -zo + L, 

where L is the gap length. 
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If the field increases (or if w decreases) the cathode-anode set moves toward the 
origin of coordinates and inversely (if the field decreases (or if w increases)). When 
w is positive (zone 1) the cathode-anode set is located at the right of the origin 2 = 0 
(Fig. 3) and when w is negative, on all sides of the origin (Fig. 4). 

It is clear now that there is only one net of characteristics. The particular net 
corresponding to particular values of w or E is located between the straight lines 
defined by 2, and Za (zone 1) or Z = 0 and 5 (zone 2). 

FIGURE 3 

FIGURE 4 

S8d24/1-4 



48 SEGUR AND KELLER 

If the potential is no longer linear, the (z, r-L> characteristics are not always inde- 
pendent of the field. We have only the relation 

P‘YZ, zo 9 z*> = 1 - ((p(z*> - B(z,))/(+(z) - qxzo))), (2.6) 

where + is the potential of the applied external forces. 
We may also notice that, in zone 1, the distribution function is discontinuous along 

the characteristic line whose equation is given by 

P2(Z, 4J , z*)z*dJ = 1 + (zo/(z - zo)). (2.7) 

This discontinutity is maximum in the absence of collisions. It decreases when the 
influence of collisions grows and it may be eliminated by choosing convenient 
boundary conditions. It is clear that this discontinuity must be taken into account 
in building up the discrete scheme of (1.1). 

2.2. Description of the Nonconservative Process 

The electrons are ejected from the cathode with a half-Maxwellian distribution. 
As this distribution decreases rapidly, we may assume that there are no electrons 
above some energy WM . With this assumption, the eIectrons in zone 1 move in a 
“band” with, say, a width of 5 eV, located between the characteristics w,, = 0 and 
WM = 5 eV (Fig. 5). In this band there are only electrons directly emitted from the 
cathode. Some electrons leave this band by inelastic collisions. The electrons moving 
with a total energy WM generate electrons in zone 2 with a maximal total energy 

cathode 

0 anode E 

FIGURE 5 
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WY1 = wM - l 1 (Ed ,‘first excitation threshold of the scattering gas). In the same way, 
the electrons located on the characteristic w, give up, in zone 2, electrons whose 
minimum total energy is wol = w,, - l i (E$ , last excitation threshold; here, the ioni- 
zation threshold). The wol and wM1 characteristics define a new band in zone 2 wider 
than the first one by l i - l 1 . We have 

W Ml - w,,l = WM - wo + Ei - El 

and generally, for the other bands, 

WMn - won = WM - w, + n(Ei - q). (2.8) 

This means that the distribution function shows a shape with a succession of “knobs” 
and “hollows.” This is peculiar to a nonequilibrium distribution [l]. Relation (2.8) 
above also shows that the bands overlap very quickly (in the case of helium, for 
example, bands 3 and 4 overlap). 

3. BUILDING-UP OF THE DISCRETE APPROXIMATION OF EQUATION (1.1) 

Boundary conditions (1.3) must now be adapted to the existence of the different 
zones. We have 

Zone 1 

f+<z, zo 3 z*Lo = A exp ($$-), (3.la) 

respectively. 

p’<z, Z’J, z*),=,* = - 2, ZO) z*)*=p ) (3.1 b) 

p-(z, z. ) z * ) z =L = I’ > (3. lc) 

Condition (3.1 b) expresses the continuity of the distribution function at the turning 
point (p = 0) of the electron trajectory. 

Zone 2 
fqz, zo , z*),=** = J-k zo , z*L* , (3.2a) 

f-k zo 3 z*),& = 0. (3.2b) 

Conditions (3.2) are homologs of relations (3.lb) and (3.1~) of zone 1. 
To our knowledge, the numerical treatment of the problem defined by relations 

(l.l), (3-l), and (3.2) has never appeared in the literature. One does, however, meet 
very similar situations in the field of neutron physics or radiation transfer in a spherical 
medium. The most common methods here are the S, method [2] and DS, method [3]. 
Although, in principle, it seems possible to adapt one of these techniques to the 
solution of our own problem, there is in fact one basic difficulty, owing to the presence 
of a discontinuity in the distribution function along characteristic (2.7). Methods SN 
and DS, impose rectangular mesh cells and it is obviously impossible to take into 
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account the presence of the discontinuity in the framework of this scheme. For our 
purposes the only possibility consists of choosing the characteristic directions shown 
in Fig. 1 as support for two sides of the mesh cell. The other two sides are made up 
of the straight lines defined by the intersection of the perpendicular lines with the 
axis of z and the characteristics (Figs. 6 and 7). However, some problems arise from 
the choice of this type of mesh cells. 

1. The number of points on the p axis is an increasing function of z. The sets 
of successive points corresponding to the distinct abscissas are typically disjoint. 
We shall see below how to eliminate this difficulty by a careful selection of the values 
of z. 

e 

z=o 

FIGURE 6 

z=-7. 0 FL 

FIGURE 7 
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2. When z tends toward zO, the set of mesh cells has increasingly fewer points 
along the p axis. For z = z, , this number is reduced to a single point. We can question 
whether the numerical integration of the source term will be accurate enough in this 
zone, there being so few points. We know that when there are no collisions, the distri- 
bution function is constant along the curves in Fig. 7. We also know that the variation 
of z is negligible around z0 . Thus, if we move along the characteristic curves, the 
distribution function varies very little, even with collisions. Thus, with a small number 
of points in the set of mesh cells the function to be integrated will vary only slightly 
along the axis (furthermore, it is constant for z = z,, , the case of a single point). 
This variation increases when z increases, as well as’ the number of discretization 
points along the axis. The few points required around z,, by the set of meshes which 
we have chosen do not therefore impose any restrictions on the method: it is a natural 
result of electron behavior around the point of zero kinetic energy. 

Equation (1 .l) integrated along the characteristic directions is then written 

Zone 1. (a) p < 0, z E [0, L[. 

Hz, zo 9 z*) = - 3 I L VY, ZoWldY) 4Y, z, zo > z*) dY. 
I 

(b) /A > 0, z* E [0, L], z E [z*, L]. 

PC? zo 9 
* 

z*> = f-(Z*, zo ) z*> cx(z, z*, zo ) z*> 

+ 4 j-1 Y(y, zo)(d/dy) a(z, y, z. , z*) dy. 

(c) p > o,z* < 0, z E [O, Id]. 

f+<z, zo , z*> = f+(o, zo , z*) a(z, 0, z, , z*) 

+ i j-f UI(Y, zo)(d/dy) 4~ Y, zo , z*> dv. 

Zone 2. (a) p < 0, same expression as relation (3.4). 
(b) ~1 > 0, same expression as relation (3.5). 

We write 

(3.3) 

(3.4) 

(3.5) 

( s z a(z, y, z. , z*) = exp -P UT(r), zo) 
y Fh, zo , z*) d+ (3.6) 

YCY9 zo) = WY, zo) + 1 @(UT zo + 4, (3.7) 

@(Y, zo) = 

WY, zo + ZJ = 

S( y, t) = J’ {f”(Y, 4Y, ‘$3, PYY, E, z*N + f-(Y, 4Y9 09 P’(Y, 6, z*))> 

: @(y, 5, z*>. (3.10) 
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The first term on the right-hand side of Eqs. (3.4) and (3.5) is the contribution 
to the distribution function from particles that have not suffered collisions; it decays 
exponentially as the ratio of the path length to the mean free path. The terms depen- 
ding on @(y, zO) and @(v, z, + zj) in (3.3), (3.4), and (3.5) represent the contribution 
from particles scattered into a particular “volume” element in phase space. 

Given the set of mesh cells selected above it appears that the choice of a set of points 
zi(i E [0, NJ) define biunivocally the set of the pzSi(Z E [0, i]). In fact, in the half-plane 
p > 0 the relation 

‘i 
* 

zi*-z -+ 1 - zi--l - z. 
zi - zo 1 

l/2 
= pz,i , zi E rzZ”_z , Ll, %*-I E lzo 9 4, (3.11) 

makes one and only one point in the interval ]zo , L.] correspond to one point of inter- 
val [0, l[. Obviously, the points corresponding to negative values of TV are found by 
symmetry from those defined above. Furthermore, it should be noted that point z, 
has been excluded from the z definition interval since relation (3.11) then degenerates 
into 

zo* - 1 = p0.i 3 zi 6 lzo > Ll (3.12) 

and there is no continuous transition from (3.11) to (3.12). Now, if we write 

we get 

AZ:, = zi”-, - z:~-~ , (3.13) 

Apt.i = Pz+l*i - Pz.i 3 (3.14) 

AZ:, -. 
Aki = zi - z, (3.15) 

Then 
lim AP~,~ = 0. (3.16) 

AZf-t-0 

Relation (3.16) indicates that, when the number of points of the z axis increases 
indefinitely, the set pz,i becomes dense in interval [0, l[. 

The existence of this property obviously conditions the convergence of the discrete 
solution toward the exact solution of Eq. (1.1). 

As we have already said, there are many possible choices for sets {zd} or &z,i}. 
At point zi the set (~z,i}~. is made up of i + 1 points. In general, sets {P~,~}~. and {P~,~}~, 
(with any i and k) are di’sjoint. We can make their intersection not empty’by building 
up, for example, two consecutive sets {~z,i}zi and {pl,i+l}zi+l which differ by only the 
point P~,~+~ , i.e., 

~PZ,i+dzifl = lPZ,ilz, ” {P-Li.i+ll. 

Then, if we impose this condition, we have 

2,~, = z;&zp, rnE[O,N- 11, (3.17) 
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in which we have written 
z,-, = zN+,, - z,, 

Relation (3.17) above is used to define sets {z2} and {ptsi}. To do this we must simply 
choose the number of points desired, as well as the first interval on the left side 
(zl - zo) or on the right side (zN - z& of the table. 

The successive intervals LIzN-~(AzN-~ = ZN-~ - zN-~-~) are defined by the 
relation 

LlzN+ = Z, (*)” (1 - *), m E [0, N], (3.18) 

which shows that points are closer together as we approach z, . 
Once the set {z~}~=,,..., N has been chosen the first discrete scheme is defined simply 

by first assuming that the functions @(y, zo) and @(JJ, z, + zj) are constant along 
the characteristic between two points zi and zifl . If, furthermore, we introduce a 
discrete set {~lc)%~r,...,~ of values of total energy which is in agreement with the band 
structure defined in Section 1.2, we have 

SUP {wk) = WM , inf {wk} = -E * L, 
k k 

and given the relation 
wk = --EZ,l, , 

we can associate the set {wk} with {zok}. Then, if we Write 

and 
f’(Zi ) ZOk ) zi*-z) 5% Ji’“(z&) (3.19) 

@(zi , zok) ?f @$” = -$ s,” 
T,i 

(3.20a) 

@(Zi ) ZOk + Zj) N ay = J+ (1 - *) sy, 
OT.i 2 0 

(3.20b) 

we have 

Zone 1. (a) p < 0, zi E [0, L]. 

#i” = c$; + 1 cp. 
j 

(b) CL > 0. 

(1) z,?iz E 10, Ll, z, E [& , LI. 

LYx&,-z> = h-“(zL1-z> &+y + ~$~+1(1 - &y-z) 

(2) zcz < 0; zi E [0, L]. Expression identical to (3.21). 

(3.22) 
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We have written OI(Z~+~ , zi , zOk , ztTl) = ai”;i;;: . 

Zone 2. (a) p < 0, zi E [z,,~, L]. Expression identical to (3.21). 

(b) P > 0, zi E [zok , L]. expression identical to (3.22). 

Relations (3.21) and (3.22) correspond only to a discretization in position. The 
angular discretization requires simply the modification of terms Qik and @*’ in 
which the integral expressions Sk and Sf*j are obviously approximated by a discrete 
sum. We have, in general, 

(3.23) 

(3.24) 

with the traditional relations for weights 

(a) Wi.1’ > 0, (b) i CQ’ = 1. 
I’=0 

We have written 

&TF N ~*“(&‘), $JP E ~*“*Qi*_r,). 

Equations (3.21) and (3.22) then have the form 

Zone 1. (a) p < 0, zi E [0, L]. 

&” = $..;,$$I_i;r: + &J?(l - C$$-;>. 

(b) /.L > 0, zi"-, E [0, Ll, zi E E-l , Ll. 

G,, = h++i”;“;?l + +@+I(l - c&+y>, 
with 

(3.25) 

(3.26) 

(3.27) 

The weights UJ~J can be defined in many different ways. Still, given the order of the 
discretization in z, it is enough to integrate using a trapezoidal method. We then have 

Oil = (P2’+1,i - t%‘-J2. (3.28) 

On the characteristic along which the discontinuity propagates, it is necessary to 
modify the above definition. We have 

&j = (IlU+1.i - PL’*t)/2, (3.29a) 
- 

Wi.2’ = (/&‘A - PC-A/2, (3.29b) 

depending on whether one is immediately above or below this characteristic. 
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The set of relations (3.26) to (3.29) defines the discretization scheme to which the 
limit conditions must be associated. 

Zone 1 
fLf = A exp(- E.zok/KTeo), (3.30) 

(3.31) 

Zone 2 

El = 0, ZkL - - L. (3.32) 

fiz = JiTi, (3.33) 

(3.34) 

resulting from conditions (3.1) and (3.2). 
When making a discretization scheme for a transport-like equation one generally 

tries to respect a certain number of physical properties defined by the initial equation. 
In order to do this the equation is usually expressed in its so-called conservative 
form [3]. In our case, we have 

with I = w + E.z. B(f, p) represents the population term of Eq. (1.1). It therefore 
includes the elastic and inelastic collisions. 

If we integrate (3.35) into the cosine space we immediately have 

(3.36) 

where J is defined by J?i p’f dp’. Notice that the angular derivative vanishes in this 
integration and that-in the case of a perfect Lorentz gas, the product ZJ is constant 
along the total constant energy characteristics. 

Integrating equation (3.36), with respect to J, over a finite surface, gives 

w+EL _ ZJ], - - s 1,” W) S(I) d2 + + I;+,’ I d5 s:’ B(f, $) dp’, (3.37) 

in which the product 2J comes into play only through its boundary values in the 
integration. 

Conservation relations (3.36) and (3.37) should both be respected in our scheme: 
clearly in its present form this is not the case. 

When the cross sections approach zero the distribution function becomes constant 
along the characteristics and this property is maintained by our scheme. In addition, 
since the solution to (1.1) can only be positive it seems logical that the discrete function 
be positive also. Still, there is a problem for this case, because a strictly positive scheme 
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(that is, one in which new values are a positive linear combination of old values) 
is generally not very accurate [4]. In spite of this, we have retained a positive structure 
in our scheme because it is easy to study convergence and stability in this way. 

To summarize, the scheme defined by (3.26) and (3.27) is positive, and asymptoti- 
cally correct within the limits of the zero cross sections. As we already seen, this makes 
it possible to take into account the discontinuity of zone 1 in the cosine space. 

Furthermore we claim it is convergent and stable. Before going any further we shall 
demonstrate these two properties. 

4. CONSISTENCE AND CONVERGENCE OF THE DISCRETE SCHEME 

4.1. Consistence 

Let us set 

m=+(z, ZOk 7 z*>) = f+<z, ZOk 2 z*> - f+<zi , ZOk , z*> 4z, zi , ZOk , z*) 

- : *I NY, ZOkW~Y) 47 Yv ZOk 3 z*> dY, I (4.1) 

T~~i+,(~+~(za?;l-J) = fl+;(z&) - f:“<zi*,,-,) c&‘$-~ - $,@+l(l - CX:$-‘), (4.2) 

TQ(~;:*,) = Ji;:,z - J;kaz”;pz - ~@+l(l - ai”;i;ti’-z). (4.3) 

The above relations refer to zone 2 (no discontinuity) and to the half-plane p> 0. 
Under these conditions, the discrete equation (3.27) is consistent with the initial one 
(3.4) if we have 

Let us set 
Vi E [0, N], 1 E [0, N], k E [l, M]. (4.4) 

IAT” ~l~Tlkl+I~~,kl (4.5a) 
with 

AT,” = T(f+(z. ,+I > ZOk, Z&z)) - L,+,tJi=",(&-zh (4.5b) 

d G” = T~,,+,<Ji=“,(zi”,,-z>) - T%;?fi;,z). (4.5c) 

If we assume that the functions Q”(y) and Qk.j( y) contain continuous bounded 
derivatives up to a high enough order, we obtain the inequality 

1 AT,” I < (d/2) Ok - dz (4.6) 
with 

AZ = sup dz,+l . 
iE[O.N-11 
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In the same way, taking into account the inequalities 

0 < ~i,lbT,i,l < 1, 0 G ~i,i+ll~T.i+l < 1, 

we have for 1 d Tzk j 

/ ATZk ( < (l/24) c? (Fb + R” c Fkvij A$. 
i 

We have written 

A pi+1 = SUP Am,, , 
1do.i+11 

A/L = 

ak = 

SUP Ac~i+l, 
idO.N-11 

sup (1 - &+i’-z), 
idO.N-11 
ze[l.i+ll 

Fk = 

Fk.i = 

s f f”(Zi+1 , J%,i+l - ZOk), Fi’(zi+l 9 ZOk , z*)>s 

Rk = SUP (1 - (Z&+I - zOk))). 
idO.N-11 

k.Jl 

Finally, we have the inequality 

ATE < (G/2) (8” . AZ + (l/12) (Fk + Rk $ F”-j) Apa) = T+~, 

57 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

(4.7e) 

(4.7f) 

(4.W 

(4.7h) 

(4.8) 

proving that the discrete equation is consistent with the initial equation (3.4) when 
AZ -+ 0 and on the condition that the derivatives in 8” and Fk are continuous and 
bounded. 

Relation (4.8) is used for the case p > 0. The calculations for p < 0 are carried 
out in the same way, and we arrive at a relation basically identical to (4.8). However, 
in this case, when we are along the zero total energy characteristics there is a problem, 
since the ratio zj/(zi - zok) becomes infinite for d = 0, Still, the product 

~&5/(Zi - ZOkN 

remains finite, and the consistency is again verified. 
The properties pointed out in the second paragraph concerning the existence of 

only one net of characteristics allow us to define a “maximal” number of discretization 
points (N + 1) corresponding to the “maximal” distance covered by electrons (say 
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L + wM/E, where wM is the maximal total energy). All our proofs are given by 
assuming that electrons effectively cover this maximal path. In fact this is not the 
case and strictly speaking it would be necessary to connect N to w. But it is easy to 
see that if the proofs are valid on the net G = [0, N + 11, they are also on any subset 
of b. So we do not have to connect N and W. 

4.2. Convergence 

Let us now introduce the following notation 

II ,fk II = sup I Ck I, 

II 2’ II = sup I d,! 0 
i.1 

II ek II = II e+k II + II e-k Il. 

Our aim is to show that the error e:t is such that 

lim Ij ek I/ = 0. 
Ar-10 

(4.9 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
(4.14) 

(4.15) 

(4.16) 

(4.17) 

In order to do this we must go back to relations (3.26), (3.27), (3.4), and (3.5). In the 
interval [zi , zwl] Eq. (3.5) takes the form 

.f+(zi+l , ZOk , zi+il-Z) 

= f+“(zi > zOk , .$1-Z) df;ti’-z + : j-;‘+l ti(% zOk)(d/did +i+l 9 Y, zOk , z:+l-Z) dy 

(4.18) 

If we develop @(JJ, zok) and @( y, zok + zj) in an Taylor series about the point z~+~ 
and if we replace the b’ integral in @(y, zon) and @(y, .&k + ZJ by a discrete sum, 
we have the following, taking into account the errors made during the two approxi- 
mations: 
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where 71tI satisfies the inequality 

[ Tgl / < T+k 

with T+~ .defined by (4.8). 
Subtracting (3.27) from (4.19a) gives 

(4.19b) 

with 

(4.20) 

$,i”+“, = (~i+l/“T,i+l) wi”+l 3 

$57’ = (uj,i+l/uT,i+l)(l - (zj/(zi+l - ZOO))) wffl s 

Proceeding in the same way for (3.4) and (3.26), we have 

(4.21) 

(4.22) 

eZz = e;+k2, z+l~f;\+~;lz , + ; (@$ + C 6;?j + T$) (1 - CL;;;;;;) (4.23) 
j 

with T$ satisfying the inequality 

j T;Il 1 < T-k 

where T-~ is the homolog of ?+lc for p < 0. 
Then, if we sum relations (4.20) and (4.23) for all points of discretization, we obtain 

et” -k k.i+l-Z 
2+~.z = ei+l-z,i+l-z%+l.i+l-z 

Remembering that 

we have 

Multiplying by UJ~+~, L and summing, we obtain 

II V:+I II S (II Wk II + Rk c II flkai II) (1 - H:+, cash ,@+l,i+lA 
j 

(4.26) 
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where 

Since the lower bound of the hyperbolic cosine is 1, we may write 

II ,9-k II < (II W-” II + R” c II Wk,j /I + +) (1 - Hk), (4.27) 
i 

where we have set 

Hk = inf Hi”, 
idOX 

rk = SUp{T+k, 7-k). 

If we note that Ij wk 11 < /I Vk I/, we have 

II Vk II G ((1 - Hk)/Hk) (Rk 1 I! Vksi II + TV) (4.28) 
j 

Furthermore, using relations (4.25), we obtain 

/I ek 11 < (II vk II i- Rk c II Vk.j 11 + Tk). 
j 

(4.29) 

Then, since /I 9.i II < 2 I/ e”*j 11, we have finally 

/I ek II < (2Rk c /I ek*j I/ + T~)/H~. 
j 

(4.30) 

In relation (4.30), ek.j designates the error associated with the characteristic wk + Ej . 
The convergence of the discrete solution with the exact solution is proved on con- 

dition that ekJ approaches zero at the same time as T k. Now, in band I, (4.30) is 
written as 

I] ek’ /I < (Hk’)-’ T:’ (4.31a) 
or if we prefer 

II eksi 11 < (Hkfjel @, (4.31b) 

Where of”’ (resp. r:*‘) is the restriction of 7k on band I (deduced from (4.8) by canceling 
p*k*j). It is clear that lim 11 ek’ (/ = 0 when dz -+ 0. In band II, the error obeys (4.30) 
with Ij ekpj 11 given by (4.31 b). It follows that the convergence is also assured. One can 
reason similarly for the other bands and thus show that the convergence of the 
scheme occurs uniformly. It is clear that the demonstration of the convergence is 
related to the assumption of the existence at the cathode of a “truncated” distribution 
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function in the energy space. The above study is therefore rigorous only within the 
framework of this representation. 

The stability of our scheme then follows straightforwardly from the proofs given 
above. 

As relation (4.8) shows, our scheme is only of dz order. We can still improve its 
accuracy by assuming a less strict variation of functions @“( JJ) and @*j(v) than that 
now used. The simplest and fastest modification consists of assuming that the functions 
COP”(u) and @“J(v) are constant in the interval [zi , zt+J but equal at (Qik + @ji”+J2 
and (@2*i + @:.$)/2. Under these conditions, the scheme is still of dz order, but the 
error term now depends on CD&C&~;: (or @?;k@:2[) instead of being proportional 
to q:, , @j${ (or @j:“, @5;“*j), which means a substantial improvement in accuracy. 

The second change to be made to obtain a more accurate solution brings us back 
to assuming that the functions Qk( y) and @*j(u) vary linearly in [zi , zi+J. The scheme 
then becomes of Az2 order. 

4.3. Convergence of the Iterative Process Chosen for the Solution of the Discrete Scheme 

Relations (3.26) and (3.27) lead to a linear system which includes at the most 
(N + 1)” - (N + 1) equations in unknowns. Let 

Ak . X” = y”, (4.32) 

the system in which A” is a square matrix of order (N + 1)2 - (N + 1) at most and 
Xk and Yk the corresponding column vectors. If for purposes of simplification we take 
the case of the net in Fig. 8, we get 

Xk= = If-” J-k J-k J’k f-k f-k f-k f’k J+k f+k J’k J’k , 
0.1 3 1.1 3 1.0 9 1.1, 2.2 9 2.1 9 2.0 9 2.1, 2.2 9 3.1 9 3.2, 3.3 , 

c4.33j 

We have written 
yk = 1 yk.5, 

and XkT (resp. YkT) designates the Xk (resp. Yk) transposed matrix. 
The matrix Ak here is reducible. In fact, it can be written as 

(4.34) 

A” = ii1 Ok 1, 
21 A22 

(4.35) 
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FIGURE 8 

where the irreducible submatrices A:,, correspond to the regions shown by dotted 
lines. Under these conditions, the linear system (4.32) is equivalent to 

AfJlk = Y k 17 (4.36a) 

A;&” + A;&” = Yzk, (4.36b) 

where X1* and Xzk (resp. Y,” and Y,lc) represent two submatrices of Xl” (resp. Y”) 
Relations (4.36) show that the solution to (4.32) can be reduced to that for (4.36a) 

(the solution of (4.36b) being trivial once the solution to ((4.36a) is known). 
Matrix AtI (Table I) is irreducible and diagonally dominant. Its inverse matrix 

is therefore nonsingular and its elements are positive or null. Consequently, A& is 
an A4 matrix [5] and the Jacobi or Gauss-Seidel methods associated with (4.36a) 
converge. 

The solution is carried out by means of the surrelaxation method, the algorithm 
of which is written as 

+C”j”(1--+-) 
j oT,i 

(4.37) 

with i’ = 1, p < 0; i’ = - 1, p > 0; Q is the surrelaxation parameter, and (m) is 
the iteration counter. 
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The stop test used is a uniform convergence test of the source term 

zy.J1 l((Sp+l) - S:(m))/Sp+l))/ < 10-3. 

From a practical standpoint the solution is carried out from the high down to the 
low energies. The values of the distribution function and the source term (which 
obviously represents the isotropic part of the distribution function) are determined 
in the first band. Then, we interpolate over Sik using cubic-spline functions. The 
functions thus obtained are used as the population term for calculating the second 
band. Once the values of sik are obtained in this band, we interpolate again using the 
spline functions, treat the following band, and so forth, until we reach the last charac- 
teristic. 

As has already been mentioned, it is possible to use different schemes to increase 
the accuracy of the calculations. The second scheme used is found by again assuming 
the source term to be constant in the interval [zi , zi+J, but taking it equal this time 
to ((Sgk + s:+,p 

Extra terms appear in the A” matrix, which remains nevertheless an M matrix, 
and this ensures the convergence of the numerical process. Furthermore, this is the 
scheme used for most of the calculations. Compared with the preceding scheme the 
gain is very advantageous: while the duration of one iteration is slightly longer, the 
number of iterations often decreases by half. It is to be noted that the results obtained 
in these two cases are very close in the region where we have calculated. 

The use of a two-order scheme is much less productive. This is obtained using a 
linear variation of the source term between zi and zi+r. It is then necessary to use a 
more precise integration formula than the trapeze formula. Although theoretically 
more exact than the preceding, this scheme yields only a very small gain in precision, 
while it is much more difficult and slower to use. This is possibly due to the fact that 
the quadrature formula used a (trapezoidal formula with end corrections) leads to 
a one-order scheme near TV = 0. The consistency and convergence of the scheme can 
be established in the same way as for the one-order scheme. In any case, this scheme 
is used very infrequently because it is too cumbersome and provides too small a gain 
in precision. 

5. NUMERICAL RESULTS 

We shall now give several of the numerical results obtained in a helium discharge. 
Figures 9 and 10 show the graphs of various selected cross sections [6]. It can be noted 
that we have taken into account only two levels of excitation in order to simplify. 

First, we find the electron transmission factor defined by the relation 

, (5-l) 
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FIG. 9. 1, Total macroscopic cross section (q); 2, total inelastic cross section, J$i oj ; 3, elastic 
cross section (u). 

0 25 50 75 100 125 

(e. v. ) 

FIG. 10. 1, Excitation cross section for the first level (q); 2, elastic cross section (u); 3, excitation 
cross section for the second level (Q); 4, excitation cross section for the third level (ionization level, 
a,); 5, total inelastic cross section (F f-l q); 6, total cross section (I+ 
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FIG. 11. 1, E/P = 2000 V cm-’ Ton-l; 2, E/P = 1000 V cm-l Ton-‘; 3, E/P = 500 V cm-1 
Torr-I; 4, E/P = 200 V cm-l Torr-I; 5, E/P = 100 V cm-l Torr-l; 6, E/P = 50 V cm-1 Ton-l. 

FIG. 12. 1, r = 0; 2, r = 0.2; 3, r = 0.4; 4, r = 0.6; 5, r = 0.8; 6, r = 1; q, = 14eV. 
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which represents the fraction of electrons which are lost by the cathode. If we first 
assume that any electron returning to the cathode is perfectly absorbed, the variation 
of the transmission factor versus the initial electron energy (assumed to be initially 
monokinetic) is shown in Fig. 11. If, on the other hand, we no longer assume a total 
absorption and assume instead that a certain percentage of these are sent back into 
the discharge (this return is indicated by a reflexion coefficient r between zero and one) 
we obtain the network of the curve in Fig. 12. 

The study of the network of characteristics performed above has shown us that only 
the electrons located in zone 1 have the capability of returning to the cathode. It 
follows that to find the transmission factor requires simply the solution to the equation 
in band I. 

Calculating the isotropic part on the other hand requires taking into consideration 
all of the bands together. In Figs. 13 and 14 we have shown the variation of S(z, 6) 
drawn in perspective. 

FIG. 13. Spatial growth of the isotropic part of the distribution function. E = 1000 V cm-l; 
E/P = 50 V cm-l Torr-l. 
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FIG. 14. Spatial growth of the isotropic part of the distribution function. E = 1000 V cm-‘; 
E/P = 200 V cm-l TorP. 

6. CONCLUSION 

In this paper we have developed a numerical method for solving the Boltzmann 
equation, essentially on the basis of the study of the characteristic directions from the 
left-hand side of the equation. 

Examining relations (3.26) and (3.27) or the matrix of Table I, we can easily realize 
that the discretization diagram adopted can in practice be used only if the coefficients 
~$j’i are not near zero. In fact, in this case, the function expressed at point i, I, for 
example, clearly no longer depends on the value of the function at the point directly 
preceding i - 1, I - 1. At the level of the matrix in Table I this is indicated by a 
spectral radius near 1. In order to increase CY~;&~ we must simple decrease the discreti- 
zation step. Still, since CX~;&/ represents a measure of the number of electrons which have 
not undergone collisions, it follows that the discretization step will have to be even 
smaller because the number of collisions will be greater, i.e., that there will be a lower 
E/P ratio. We quickly realize that from a practical standpoint (storage of values in 
computer memory, prohibitively long calculation times) that as E/P decreases, it is 
hardly possible to ‘go below E/P = 20. 
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This limits the application of our numerical diagram (corresponding to assumptions 
made at the beginning) to situations of high E/P values. The typical situation which 
can be easily approached within the framework of this diagram is that of the cathode 
zone in a discharge in the presence or absence of a space charge. 

If we wish to study more general situations (e.g., finding the distance where the 
electrons are in equilibrium with the field), it seems necessary either to improve the 
present diagram, or to introduce different approach techniques. 

An improvement of the present scheme (which still keeps the present set of meshes) 
can be made by using a Lathrop-like approach [3]. For example, we can define a 
discrete scheme starting from the equation 

A& zo 7 z*x#w) = -4z, zo>P + wi I.4 (6.1) 

and replacing the derivative by its discrete form and taking the averages for the various 
coefficients. For example, for ~1 > 0: 

(6.2) 

Under these conditions, we have a scheme which is not uniquely positive and the 
conservative properties (3.36) and (3.37) can be respected. Problems arise here con- 
cerning the choice of weights w~,~’ and the demonstration of the stability. 

When the ratio E/P is very low, the electrons are very rapidly in equilibrium with the 
field and the electron-molecule collision free paths are always much smaller than the 
gap distance between electrodes: the study of the return to equilibrium could be 
carried out by means of a development of the distribution function in a power series 
of h/L (X, mean free path of electron; L, gap length). We are then brought back to 
equations such as the classical diffusion equations of the neutron physics. 
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